Researchers Study Cause of Birth Defect

Brandi Klingerman | February 16, 2017

Paul Huber

Small ubiquitin-like modifier (SUMO) proteins are small peptides that get added on to other proteins to regulate their activity. While SUMO has many regulatory roles in cells, it is especially important for controlling gene expression during early development. Just a few years ago this connection between SUMO and gene regulation was relatively unknown, but now, Notre Dame researchers are exploring how a disruption to the SUMO protein’s ability to regulate embryo development may be linked to congenital heart defects. 

Paul Huber, professor of chemistry and biochemistry, and Norman Dovichi, the Grace-Rupley Professor of Chemistry and Biochemistry, are working together to understand the role of all proteins in embryo development using Xenopus laevis or the African claw frog. This species is known for having a similar gene structure to that of the human genome, meaning that findings related to this species have the potential to provide a deep understanding about human diseases. 

When discussing their research, Dovichi said, “In 2014, Huber and I completed a study using Xenopus laevis embryos to understand how more than 4,000 proteins fluctuate during the different stages of development. We found that certain proteins spike or lower during specific stages. For example, a number of proteins that are used during the creation of cardiovascular tissue rose during stage 13, when organs develop.”

Read more here.

 by Daily Domer Staff

Posted In: Features