ND scientists work on new cancer study

Stephanie Healey | October 22, 2014 

Undergraduate science research in Prof Marya Lieberman's lab

A team of University of Notre Dame scientists, in collaboration with researchers at the University of Connecticut, have announced the results of a new study on identifying potential targets for personalized cancer vaccines. The paper, “Genomic and bioinformatic profiling of mutational neoepitopes reveals new rules to predict anticancer immunogenicity,” was recently published in the Journal of Experimental Medicine. The research group at Notre Dame was led by Brian Baker, associate dean for research and graduate studies and professor of chemistry and biochemistry, and included Steven Corcelli, associate professor of chemistry and biochemistry, and graduate student Cory Ayers.

“There has been a lot of attention on cancer vaccines in the last 10 years. The potential is huge, but actual progress has been slow,” said Baker.
Vaccines are introduced into the body to create or boost an immune response to protein antigens that differ from those normally produced by the host, such as those from viral proteins. Tumors develop due to mutations in a person’s DNA, causing production of mutated proteins and neo-antigens that also differ from those produced by the host. “Many of these neo-antigens result in the destruction of early-stage cancerous cells by the immune system,” said Baker. “In cases of established cancer, however, the immune response is insufficient, but can be boosted through vaccines.” It has been difficult for researchers to develop vaccines for cancer based on neo-antigens because they are rare and can vary from person to person. Additionally, identifying those neo-antigens that differ enough from the host to elicit an actual immune response presents yet another challenge.

 by Daily Domer Staff

Posted In: Features