Immunotherapy Research

9 20 18 Feture Immune

Deanna Csomo McCool | September 22, 2018

The body’s immune system is a valiant weapon against disease, and harnessing its power through a technique called immunotherapy is at the forefront of current research to treat cancer and other diseases.

That’s why an unexpected finding by University of Notre Dame researchers and their collaborators, related to the way two distinctively different peptide antigens react with one T-cell receptor (TCR), tosses a new wrench into the process of building better molecules to develop immunotherapies.

The surprising research showing peptide adaptability was published Monday (Sept. 17) in Nature Chemical Biology. Brian Baker, the John A. Zahm, C.S.C., Professor of Structural Biology and chair of the Department of Chemistry and Biochemistry, was principal investigator on the study and worked with co-authors from Notre Dame as well as Stanford University, Loyola University and the University of Kentucky.

“Essentially, we discovered that T-cell receptors can be much more cross-reactive than we previously envisioned, which is somewhat concerning for the entire field,” said lead author Timothy Riley, Baker’s former graduate research assistant and now co-founder and chief scientific officer of startup Structured Immunity, a company incubated through Notre Dame’s IDEA Center that aims to de-risk early stage immunotherapeutics.

T cells are a subtype of a white blood cell responsible for sensing whether you’re healthy or have an infection, but they often ignore cancer cells as a potential threat. In T-cell immunotherapy, some of the cells are altered to contain receptors that allow the T cells to seek and destroy specific, undesirable cells when the receptor reacts with specific peptide antigens, an action required to induce an immune response. While the treatment is effective in some cases, in others, it can destroy healthy cells. Therefore, researchers seek to predict reactivity and assure the reaction is specific only to the cells they want to target.

Read more here.

 by Daily Domer Staff

Posted In: Features