New Insights on Ovarian Cancer

Brandi Klingerman | July 6, 2017


When it comes to ovarian cancer, 60 percent of patients are diagnosed in stage III, meaning the cancer has already metastasized, or spread, throughout the pelvis. Additionally, between 70 and 90 percent of those patients will be diagnosed with recurrence and although recurrent ovarian cancer is treatable, it is rarely curable. These unfortunate results are partially due to the disease’s ability to spread cancer cells and therefore efficiently penetrate other organs. To better understand how metastatic ovarian cancer spreads, Notre Dame researchers at the Harper Cancer Research Institute (HCRI) are evaluating the impact of ovarian cancer cell molecular composition and how these cells work together to invade surrounding tissue.

Yuliya Klymenko, a postdoctoral scholar in chemistry & biochemistry, recent Fulbright awardee, and affiliated member of the HCRI, led two studies evaluating the role multicellular aggregates (MCAs) – groups of cancer cells that are clustered together – play in ovarian cancer metastasis. In discussing the research, Klymenko said, “Ovarian cancer is unique compared to other cancers in that when cells shed off of a tumor, they don’t die. Instead, the cells survive in the peritoneal cavity – a space filled with fluid that includes the abdominal and pelvic areas. In order to spread disease, the cells rely on cadherins, a type of adhesion molecule, which make the cells bind together into MCAs. Cadherins not only give integrity to the MCAs, but also help the cancer cells stick to and penetrate tissue.”

In a study published in Neoplasia, funded by the National Institutes for Health (NIH) and the affiliated National Cancer Institute, the Notre Dame researchers looked at how ovarian cancer cells group differently based on the type of cadherin molecule the cells expressed. The research assessed three different types of cadherin expression patterns in cancer cells: N-cadherin, E-cadherin, and a hybrid with both N- and E-cadherin. The study showed that cells with the same cadherin make-up were drawn to each other and that cadherin composition can actually regulate the MCAs’ compaction, cohesiveness, and ultimate dissemination More importantly, these results suggest that the type of cadherin expressed by MCAs could change how the cells respond to therapeutics.

Read more here.

 by Daily Domer Staff

Posted In: Features